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ABSTRACT

In recent years, deep networks have been successfully applied to
model image concepts and achieved competitive performance on
many data sets. In spite of impressive performance, the conven-
tional deep networks can be subjected to the decayed performance
if we have insufficient training examples. This problem becomes
extremely severe for deep networks with powerful representation
structure, making them prone to over fitting by capturing nonessen-
tial or noisy information in a small data set. In this paper, to address
this challenge, we will develop a novel deep network structure, ca-
pable of transferring labeling information across heterogeneous do-
mains, especially from text domain to image domain. This weakly-
shared Deep Transfer Networks (DTNs) can adequately mitigate
the problem of insufficient image training data by bringing in rich
labels from the text domain.

Specifically, we present a novel architecture of DTN to translate
cross-domain information from text to image. To share the labels
between two domains, we will build multiple weakly shared layers
of features. It allows to represent both shared inter-domain features
and domain-specific features, making this structure more flexible
and powerful in capturing complex data of different domains jointly
than the strongly shared layers. Experiments on real world dataset
will show its competitive performance as compared with the other
state-of-the-art methods.

Categories and Subject Descriptors

1.4.7 [Learning]: Parameter learning, Concept learning, Knowl-
edge acquisition; H.2.5 [Database Applications]: Image Repre-
sentation
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1. INTRODUCTION

Deep networks [11] formed by multiple layers of non-linear trans-
formations can simulate the perception of human brain to repre-
sent high-level abstractions. Existing deep network architectures
include Deep Belief Networks (DBNs) [11], Convolutional Neural
Networks (CNNs) [11], Stacked Auto-Encoders (SAEs) (3], Deep
Boltzmann Machines (DBMs) [27], as well as many of their vari-
ants. These deep networks have achieved a tremendous success in
many areas, such as image classification [16], feature learning [25],
collaborative filtering [28], face verification [32], etc.

However, these general deep networks are so powerful that they
are prone to overfitting into minor and often noisy variations in a
relatively small size of data set. This problem becomes extremely
severe when we attempt to build deep networks to model images
and their concepts without sufficient amount of data. Several s-
trategies have been proposed to avoid the overfitting by reducing
the unnecessary network complexity, e.g., dropout technique for
randomly omitting some hidden units with a constant probability
[12], corrupted input [33], greedy layer-wise training with sparse
filtering [17, 19], alternative convolution and pooling layers as pre-
vious layers [16]. Although these strategies have achieved better
generalization performance, they often sacrifice the representation
power of deep networks to varying degrees.

Instead of trading the representation power of deep networks for
reduced overfitting risk, we will consider another way to address
this challenge of insufficient training data by bringing in labeling
information from other modality, namely, the text document. We
aspire to answer the question — How can the cross-modal data help
model image concepts? We find it beneficial to explore the tex-
t information for at least twofold reasons: 1) the word features of
text data are more directly related to semantic concepts inheren-
t in class labels and interpret its concept intuitively; 2) abundant
labeled text documents are more widely available on the websites.
They inspire the heterogenous transfer of discriminative knowledge
from web text space (i.e., source domain) to image space (i.e., tar-
get domain). By transferring the feature representation and labeling
information from text space, we will learn a semantic-intensive im-
age feature representation directly related to image concepts, which
can greatly improve the performance of image classification tasks.
In other words, the rich information transferred from text can help
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Figure 1: Architecture of weakly-shared Deep Transfer Networks (DTNs) with strongly parameter-shared layers (left figure) and
weakly parameter-shared layers (right figure). In the left figure, DTNs use the parameter-shared layers (Layer 3 and 4) to model a
set of shared features for two domains. On the contrary, in the right figure, weakly parameter-shared DTNs relax this constraint,
allowing to use separate series of layers to model the features for two domains. These layers are weakly parameter-shared by
imposing a regularizer that decides the extent to which they should be shared. This structure is much flexible, enabling to represent
both domain-specific features and the shared features across domains.

train complex image deep networks even with little supervised im-
age data. This is contrary to the popular strategy of trading the
representation power of the deep networks for a better generaliza-
tion performance in the literature. In this paper, we will present
how to use transferred cross-modal information to train a power-
ful deep network without sacrificing structural richness, which will
yield much competitive performance on image classification tasks.

To this end, we propose a novel deep network structure that hi-
erarchically learns to transfer the semantic knowledge from web
texts to images [23], namely weakly-shared Deep Transfer Net-
works (DTNs) in this paper. As a hierarchically non-lineal mod-
el, DTNs differ from existing shallow transfer learning algorithms
in the literature [37, 8, 24, 26] which learn the heterogeneous fea-
ture presentations by linear mathematics models, such as matrix
factorization, subspace learning, and linear translator function. In
DTNs, we model two SAEs that take a pair of text and image as in-
put respectively, followed by multiple parameter-sharing network
layers at the top. The output of the shared layer in DTNs yield-
s the translator function that can be used to transfer cross-modal
information. To the best of our knowledge, existing methods in
literature like multimodal deep networks [20] are representation-
sharing. Our parameter sharing scheme makes our networks more
flexible, especially when the application requires more modality-
specific features are learned. In other words, by sharing parame-
ters, we allow deviation exists between the feature representation-
s of different modalities. In contrast, in “representation-sharing
structure”, a set of common features are constructed, which usually
overestimates the importance of modality-specific features.

In this paper, we highlight the difference between the strongly
parameter-shared layers and the weakly parameter-shared layers as
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shown in Figure 1. Different from the strongly-shared layers, the
weakly-shared layers allow the use of separate layers for differen-
t domains. The extent to which these layers are weakly-shared is
adjustable by a regularizer modeling their difference. The bene-
fit of weakly-shared layers is the flexibility of representing shared
inter-domain features as well as domain-specific ones, making it
more powerful in modeling complex data of multiple domains than
strongly-shared layers.

We will show that DTNs are trained in a novel way that min-
imizes the errors incurred by a cross-modal information transfer
process. In our experiments, we use image classification task to
evaluate the effectiveness of trained DTNs. In testing phase, the
test image without neither text nor label/tag can be represented by
trained DTN, and then assigned the class label by the trained trans-
lator. Extensive experiments on real world data sets show the effec-
tiveness of DTNs compared with the other state-of-the-art methods.
Figure 1 presents an overview of our proposed networks.

2. RELATED WORK

We briefly review some related works on deep learning and trans-
fer learning in this section.

2.1 Deep Learning

Deep learning has been comprehensively reviewed and discussed
in [1]. As one of the variants of deep learning models, SAEs have
been widely used for face recognition [15], motion detection [35],
multimedia retrieval [22, 9], etc. The classical SAEs linearly stack
multiple layers of Auto-Encoders together to learn higher-level rep-
resentation. The high-level representation output by SAEs can be
used as input to a stand-alone supervised learning algorithm, e.g.,



Support Vector Machine, Softmax, Logistic Regression, etc. Con-
sider their superior performance in feature learning, we will adopt
SAEs as basic building blocks to model multi-modal representa-
tions upon which a novel multi-layered translator function will be
built to transfer discriminative information across heterogeneous
domains.

2.2 Transfer Learning

Transfer learning [23] aims to improve a learning task with lit-
tle or no additional supervised information in a target domain by
propagating the knowledge from the other source domains in which
there are usually abundant training data. Transfer learning can be
mainly categorized two subsets: homogeneous transfer learning
(domain adaptation) [7, 18, 21, 14] in a single domain but with d-
ifferent distributions in training and testing sets, and heterogenous
transfer learning [37, 8, 24] across different modalities. Most of
existing transfer learning algorithms focus on the former class of
transfer learning problem, while the latter one is more challenging.
In this paper, we will focus the second class of transfer learning
problem. Our focus is a novel transfer learning scenario where
the heterogenous data in different domains is not aligned, and a
cross-modal alignment must be learned before information can be
transferred across different modalities. This will make the transfer
learning problem more challenging as compared with the existing
scenarios.

2.3 Alliance of Deep Learning and Transfer
Learning

Deep learning has been explored to marry the transfer learning
in literature [2]. For example, Glorot et al. [10] employed S-
tack Denoising Autoencoders (SDAs) to learn hidden feature repre-
sentation for homogeneous cross-domain sentiment classification.
Zhang et al. [36] proposed a deep neural network for domain adap-
tation by modeling and matching both the marginal and the condi-
tional distribution between two homogeneous data. To reduce high
computational cost and enhance the scalability of SDAs, Chen et al.
[4] proposed marginalized SDAs. Socher et al. [29] first attempt-
ed to study heterogenous transfer learning, though they focused on
learning a zero-shot image representation than directly transferring
cross-modal information. On the contrary, the proposed DTNs will
consider a practical heterogeneous transfer learning scenario where
the image concepts can be directly modeled from the text labels.
This way, we can fully explore the rich cross-modal information
to train densely connected deep transfer models while avoiding the
overfitting problem.

The related deep representation networks (i.e., multimodal deep
learning [20, 30], multimodal learning with DBMs [31], etc.) learn-
ing joint representations across multiple modalities are only shared
on top of layers of modality-specific sub-networks. Deeply cou-
pled auto-encoder networks [34] learn two deep networks embed-
ded intra-class compactness and inter-class penalty with each other
in each layer. The key difference is that these existing model-
s are “sharing representation', while our method is “sharing
parameters'', which makes our networks are more robust for
modality-specific features.

3. PROBLEM DEFINITION

First, we consider text as source domain and image as target do-
main in this paper in this paper. Then we are given a labeled text
data set Dsg = {(x5, gjs)}j:sl in text domain, in which X; € R*
is the text data of source domain and QJS € {+1, —1} is the corre-
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sponding label . Our goal is to transfer the labels from the text data
set to the target image domain for a classification task. To facilitate
the label transfer process, we also have another co-occurrence set
of paired texts and images C = {(xf,xf)}iicl where x; € R®
and x! € R denote one text and image respectively. By exploring
this co-occurrence set, we can reveal the alignment between texts
and images, which will facilitate the label transfer between these
two domains.

In particular, in this paper, we will jointly learn the deep repre-
sentation of texts and images to effectively transfer the discrimina-
tive information from the source text domain to the target image
domain. At the core of the deep transfer learning process is an ef-
ficient cross-modal translator which can transform the labels from
text domain to image domain, even with the challenge of scarce-
ly labeled target-domain data. By leveraging the learned deeply
translator, we can solve the image classification task with extreme-
ly insufficient training data.

4. PROPOSED NETWORKS
4.1 The Architecture

For an input vector Xo, the formulation of a classical Auto-Encoder
is comprised of an encoder function h(x) = s.(Wx + b) and a
counterpart decoder function A(x)=s4(Wx 4 b) to minimize the
reconstruction error of loss function loss(xo, A(h(xXo))). sc(-) and
sa4(+) are the non-linear activation function and decoder’s activation
function respectively. Several auto-encoders can be consecutively
stacked to form the Stacked Auto-Encoders (SAEs) by feeding the
hidden representation of the /-th auto-encoder into the /+/-th auto-
encoder.

Built upon SAEs, we propose a Deep Transfer Networks for in-
formation transfer across two domains, whose structure 2 is shown
in Figure 1. First we pre-train two SAEs for text and image respec-
tively, which output hidden representations of these two domains
via the multiple layers of nonlinear encoding. Assume that these
two SAEs have L layers, where they are structured and built sep-
arately. After the first L, layers, the two SAEs begin to share their
structure where Lo shared layers are constructed as shown in Fig-
ure 1. These shared layers provide a way to transfer the information
across two different domains represented by the two SAEs. In this
case, the input into the shared layers is the (additive or multiplica-
tive) mixture of outputs of the bottom L layers by two SAEs.

However, we find this sort of strongly parameter-shared layers
tend to over-mix the features learned from two heterogeneous do-
mains, namely text and images. In other words, although there
exist many shared features across different domains, it is risky to
completely ignore the domain-specific features through the shared
layers, since text and images often contain many elements that can-
not be expressed by the same set of the neurons in the shared layers.
In this paper, we relax such strongly shared structure, and propose
to use weakly parameter-shared layers, which balance between the
shared features and domain-specific ones.

Formally, there are L+1 layers in DTNs, where L = L1 + Lo.
Given a pair of input text x? and image x; , we use ng € R and

ng € R to denote the latent representation of a hidden layer !

'We reserve S and T in the superscript to denote the source domain
and target domain respectively throughout of this paper.

It is worth pointing out that the SAEs for each domain can be built
upon another deep network. For example, we can create a Convo-
lutional Neural Networks whose output is ingested into the SAEs
for image domain. However, to avoid notational and illustration
clutters, we do not explicitly show this structure.



for the two SAEs respectively. At the first layer, we set X(O) =x7

and x = x; as inputs. For easy of presentation, we drop the

subscnpts i of x' S Y and x (l 2 (I=1,2,---,L)inthe following.
Forl =1,2,--- L, the layer wise processing of these two inputs
through the whole network is defined as follows

(l) A h(l)(XS) So (W(l) (1-1) +b(l)) € R™, W
(l) .y h(l)(x ) (W(l) (l 1) +b(l)) ERbl,

where h(Sl)(-) and hg)(-) denote the [-th layer hidden represen-
tation in text and image SAEs respectively, {W(Sl),b?}f:1 and
{WgD, bgp }-_| are the parameters in text and image SAEs respec-
tively.

The first L, layers are expected to learn the representations of
text and image respectively, while the last L layers provide shared
representations. Under weakly parameter-sharing assumption, the
parameters of the last Lo layers should be set to be equal to a certain
degree in order to trade off between modeling the shared cross-
domain features and preserving necessary domain-specific details.
Therefore, we propose the following penalty term €2 to quantify
such trading-off

0=

Minimizing this term will minimize the difference of parameters in
the last Lo layers of two SAE networks. It will be added to the
proposed objective function in the next section. A positive value
of balancing coefficient will be multiplied with it in the objective
function, which reflects the above trading-off for the weakly shared
layers.

(WS W5+ [bY —bP3). @)

4.2 Deeply Transfer Mechanism

The goal of the proposed heterogenous domain transfer algorith-
m is to transfer the labels annotated on the source domain data set
Ds to annotate an arbitrary test data x” in the target domain. For
this purpose, for a pair of image x* and text XS in Dg, we de-

fine a translator function as the inner product (h(L)( >)) h(L)( )
between their weakly shared features output from the two SAEs,
where " denotes transpose operation in this paper. This translator
function is used to propagate the labels from the source domain to
the target domain as follows

Zy ( hP (x

which combines all the source labels weighted by the correspond-
ing translator functions. For the binary classification task consid-
ered in this paper, f (XT) is also a discriminant function, whose sign
predicts the class of the corresponding target domain data x” .

We learn the parameters in the proposed DTNs by minimizing
the loss incurred by the above label transfer process, as well as
maximizing the consistency between a set of co-occurrence pairs
of texts and images to capture the cross-domain alignment infor-
mation. We elaborate these two criteria below.

() nP "), 3

e Empirical loss on the auxiliary set. We have a small size of

auxiliary training set Ar = {(X{ , i )}t 1 in the target do-
main, where X/ € R of the target space and ¢/ € {+1, —1}
is the label. We wish to minimize the training errors incurred
by the label transfer function f on this set. We define the

Algorithm 1 Training of Weakly-Shared Deep Transfer Networks

Iput: Ds={(x5,59)}'5,. c={(x5 I}V, Ar={] 37},
L1, Lo, 7, A\, i, dimension per layeri and maxIter.
Output: Parameter set O.
Initialization: Initialize parameters in set ©, iter < 1.
1: //pre-truining
2: forl=1,2,--- ,Ldo
3:  Pre-train text and image SAEs with inputs {xs} -4 and {x
respectively.
4: end for
5: Extract hidden representations on pre-trained DTN for all text and im-
age examples.
6: // dual fine tuning
7
8

T}Nc

: repeat

forl=1,2,---,Ldo

9:  Update W, b with Eq. (7) and (8).

10: Update W, b{") with Eq. (9) and (10).

11:  end for

12:  forl=1,2,---,L; do

13: Fine tune Wg), b;f) with the back-propagated errors from the

softmax output layer of image SAEs.

14:  end for

15:  Extract hidden representations on DTN for all text and image ex-
amples.

16:  iter « iter + 1.
17: until Convergence or iter > maxlter.

training errors on Ar as
Nt
argminJs = > ¢ (5 - F(RD)), @
© t=1
where we adopt a logistic loss function #(z) = log(1 +

exp(—x)) to measure the cross-domain label transfer error.

The set of parameters of DTNs over which we will mini-

mize J; include © = {W(l) (l),Wg),b(Tl)}lel at each lay-
er, which will determine the obtained weakly shared feature
representations.

e Empirical loss on co-occurrence pairs Given a set of co-
occurrence pairs C = {(x7, X7 )} < of texts and images, we
wish to maximize the ahgnment between each pair of ex-
amples in this set, yielding a translator function that can well

capture the alignment between these co-occurrence pairs. Math-

ematically, we minimize the following objective function

argénin Jo = ZX ((h(L) )) h<L)( )), %)

where x (z) = exp(—=z) is an exponential loss function,
which can be seen as a measurement of mis-alignment be-
tween co-occurrence pairs caused by the translator function.
Clearly, minimizing this loss function will ensure a large re-
sponse of translator function over the co-occurrence set C.

4.3 Objective Function and Optimization

After the above analyses, we propose the following objective
function to learn the parameters of deep semantic translator as input
of the top-layers of DTNs

argmin J = J; +nJ2 + ZQ + é‘~If, (6)
<) 2 2



L W2 W2 W2 W2y :
where ¥ = 32 (W[ DY |+ W | +[1bS7 )i the

regularization term. The parameters A, v and 7 weigh the impor-
tance of different terms. In particular, 7 is the importance weight
on alignment between the co-occurrence pairs, -y adjusts the weakly
shared structure, and A weighs the the regularization term.

To train the DTNs, we first pre-train each layer per time in a
greedy fashion by using the unsupervised data as in conventional
auto-encoder algorithms. The pre-trained DTNs set up a good start-
ing point that can be fine tuned according to the objective function
(6) by employing the available supervision information.

We implement a back propagation process starting from the top
output layers down through the whole DTN to adjust all parame-
ters. Each parameter in © is updated by stochastic gradient descent
in back propagation algorithm below:

WO — Wi — “a\?vj”) , )
S

b0 = b Maié” ®)

W = wi ua‘%) , ©

bl =b{) — ua‘z‘;), (10)

where p is the learning rate. In more detail, the gradient of the
objective function J with respect to the parameters {Wg), bg),
Wg), b%@l of the weakly shared layers can be computed as
that:

(I)forl=1,2,..., L1, we have

N N¢

oJ Ol(ut) Ox(v;) )
= +n +xwd, (11)
ow( t;awg ang s
Np N¢
oJ OL(ut) Ix(vi) 0)
= +n +Abg’, (12)
obD) ; obd) ; ob® T8
N N,
oJ 2 9(ut) < ox(vi) 0
= +n +IW ., (13)
ow ; owV ; owl T
N N,
oJ L 00(uy) < Ox(v;) 0
= +1 +Aby’; (14)
ob{V ; ob{) ; obl) T
@) forl=Ly+1,L1+1,---,L,wehave
Np N¢
oJ 24¢ Ox(vi) O _w® 0
= +n +y(WE Wi owd
ow( ;avv;” i:zlavvé” coo e
(15)
Np N¢
oJ 0l(ue) Ix(vi) ONRR0; 0)
= +n +y(bY b Al (16)
obY ; obY ; obY S
Np Nco
aJ 0l(ur) Ix(vi) O ® 0}
= +n +y(WPH W) xwid)
oW ;avw ;aW¥) e ’
(17)
Np N¢
oJ 9l(us) Ix(vi) W _p 0 )
= +n +y(bE b)Y, (18)
obyY E:: by E:: oby T
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(a)

(b)

Figure 2: Examples of birds images from NUS-WIDE and Ima-
geNet. (a) birds images from NUS-WIDE; (b) birds images from
ImageNet.

We define u; = §f - f(X{) and v; = (h(SL) (Xis))'h(TL) (x7) in
above Eq. (11)~(18). The derivatives of £(u;) and x(v;) over the
network parameters can be computed in a similar back propagation
fashion as for the conventional neural networks. The gradient of
the objective function J over the network parameters of the first L,
layers of two separate SAEs can be computed similarly as in the
above equations, expect for the third term of RHS of each equation
which accounts for the weakly shared layers only.

The above fine tuning strategy is more effective to update the text
SAE than its image counterpart, since more number of text labels
are involved to tune the networks. To more adequately tune the im-
age SAE in conjunction with the tuning of text SAE, we exploit the
supervision information in the training set A7 to directly tune the
image SAE. Specifically, we add an additional softmax layer upon
image SAE that outputs the image labels. Then the labeled images
in Ar are used to compute the back-propagated errors to tune the
parameters in the image SAE. These back-propagated errors are d-
ifferent from those computed from the objective function J that is
based on label transfer process. Here the back-propagated errors
only arise from the image labels that are intended to enhance the
tuning of image SAE. This can avoid unbalanced tuning of text and
image SAEs when much more text labels are used in label transfer
process.

We alternate between the above two fine tuning strategies — mini-
mizing the objective function J and tuning image SAE with labeled
examples in Ar. We call such mixed strategy dual-fine tuning in
this paper. This is contrary to single-fine tuned DTNs (sigDTNs)
that only trains the DTNs by minimizing J. We will compare these
two methods in experiments. The detailed procedure of dual-fine
tuned DTNs (duftDTNs) is described in Algorithm 1. The conver-
gence criterion is that the iteration steps shall end when the number
of iterations reaches the max or the relative cost of objective func-
tion is smaller than a predefined threshold.

S. EXPERIMENTS

5.1 Datasets

We conduct our experiments on NUS-WIDE data set [5], which
consists of 269, 648 Flickr images and the associated text parts con-
taining the user tags and comments annotated on each image. In our
experiments, we use ten categories to evaluate the effectiveness on
the image classification task, including birds, building, cars, cat,
dog, fish, flowers, horses, mountain and plane. To train DTNs,
we collect 1,500 co-occurrence pairs of text and image for each
category. The co-occurrence pairs of image and text with top-10
high-frequency words for 10 categories are shown in Table 1. The
text descriptions of user tags in this co-occurrence set are labeled



birds building dog horses | mountain plane
= B fil s
bird sky car cat dog horse | mountain | airplane
nature night street kitty beach sea plant foal landscape | aircraft
sky city road kitten puppy water rose nature nature plane
animal | architecture|locomotive| animal pet nature color bravo cloud aviation
wildlife water |automobile| cute running color spring brazil sky airport
water clouds traffic pet animal dark nature brasil now flying
flight blue vehicle feline water pet pink | argentina blue jet
animal building city tabby blue ocean grass cloud lake sky
blue sunset police nature cute swimming cute sky water flight
sea skyline train white nature blue beautiful | animal tree fighter

Table 1: Exhibition of co-occurrence pair of image and text with top-10 high-frequency words for all 10 categories.

¢ training images Single-Dataset (SD) setting Cross-Dataset (CD) setting
SVM | SAEs | HTL | TTI |sigDTNs|duftDTNs|[ SVM | SAEs | HTL | TTI |sigDTNs|duftDTNs
2 58.05 [59.11 [63.81 [71.21 | 75.52 77.64 59.01 |60.54 |66.22 [71.69 | 76.62 80.01
3 59.58 |62.25 |65.97 |71.47 | 75.69 78.95 60.65 |63.34 [67.23 |72.16 | 77.14 80.30
4 62.97 [65.21 (67.21 [71.38 | 76.02 79.27 61.97 [65.07 |68.22 |72.44 | 77.50 80.63
5 63.91 [66.04 |69.20 |71.57 | 76.34 79.46 63.33 |66.23 [69.28 |72.82 | 77.86 81.05
6 65.45 [67.25 |70.10 |71.69 | 76.70 79.50 64.94 66.84 |70.17 [73.26 | 78.28 81.53
7 66.76 |68.95 |71.00 |71.66 | 76.27 79.82 66.48 |68.09 |71.01 [73.40 | 78.53 81.67
8 67.29 [68.60 [71.36 [72.02 | 77.54 80.04 67.19 [69.32 |71.64 |73.56 | 78.80 81.90
9 67.73 169.94 |71.86 |72.14 | 77.68 80.21 68.07 69.89 |72.25 [73.93 | 79.24 82.31
10 67.83 |70.66 |72.52 |72.35 | 77.95 80.72 68.76 |71.19 [72.62 |74.04 | 79.41 82.50

Table 2: Average accuracy (%) of various algorithms vs. number of training images in SD and CD settings.

by these ten categories. These text labels are transferred by the
trained DTN to label the images. A test set of images without any
co-occurred texts are annotated with ground truth labels on NUS-
WIDE dataset for evaluation purpose.

5.2 Experiment Settings

We consider two different experiment settings to evaluate the
performance of the proposed DTNs.

o Single-Dataset (SD) setting: In this setting, we use NUS-
WIDE data set to train the DTNs model. Then we use the
trained DTN to transfer the text labels to annotate the test
images in NUS-WIDE data set. This is a challenging image
annotation task since the images in Flickr are taken out of
focus by amateur photographers. These images often have a
wide range of resolution sizes, ranging from extremely small
sizes (tens of pixels in each dimension) to very large sizes;
many of them contain cluttered backgrounds. All of these
factors make it difficult to model images with only limited
visual information. To address this challenge, we use DTNs
to transfer the text labels to enhance the discriminant infor-
mation for modeling images in Flickr.

Cross-Dataset (CD) setting: In this setting, we train the
DTNs model with NUS-WIDE data set, but then use the
trained DTNs to transfer the text labels from NUS-WIDE
to annotate the images in ImageNet [6]. This setting can test
the generalization ability of DTNs across different image da-
ta sets. For the sake of fair comparison, we test on ImageNet
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with the same set of ten image categories and their subcate-
gories as in NUS-WIDE. Figure 2 shows some examples of
birds images from NUS-WIDE and ImageNet. We can see
that the images from NUS-WIDE are visually diverse, while
those images of the same category from ImageNet are more
visually consistent with each other.

The performance of the proposed DTNs (with sigDTNs and duft-
DTN5s) are compared with a set of state-of-the-art algorithms below.
(1) SVMs: they are conventional shallow structured classifiers and
set as the baseline for comparison; (2) SAEs: they represent deep
structured network. SAEs model image content, and we connect
them to a logistic output layer that directly gives the predicted label-
s on images. Both SVMs and SAEs only use image content, with-
out any text labels involved. We also compare with the other het-
erogeneous transfer learning algorithms exploring text labels. (3)
Heterogeneous Transfer Learning (HTL) [37]: it maps each image
into a latent vector space via a formulated implicit distance func-
tion. HTL also makes use of the occurrence information between
images and text documents as well as images and visual words.
(4) Translator from Text to Image (TTI) [24]: it learns a translator
on co-occurred pairs of text and images as well as a small size of
training images and effectively convert the semantics from texts to
images for image classification task. Both of these two algorithms
explore the text labels to model images. TTI has been reported to
achieve the state-of-the-art performances over Flickr dataset, how-
ever it only considers a shallow label transfer structure.

We compare the performances of different algorithms with vary-
ing numbers of training images, ranging from 2 to 10. In both
experimental settings, SD and CD, the training images are random-
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Figure 3: Accuracy (%) of different algorithms with number of auxiliary labeled images. Solid line and dotted line denote the two
experiment settings SD and CD, respectively. This figure is followed by Figure 4.

ly selected, and the process is repeated ten times, and the average

performance is reported.

We also compare the accuracy of the compared algorithms with
the varying numbers of co-occurrence text-image pairs. All the pa-
rameters in our model are tuned based on a 2-fold cross-validation
procedure on the training set, and the parameters are selected when
the best performance is achieved.
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5.3 Results

In this paper, we train 5-layer DTNs, in which the number of
neurons are 1226 — 618 — 128 — 128 — 60 and 1000 — 512 —
128 — 128 — 60 at each layer from bottom up in iamges SAEs
and text SAESs, respectively. The last three ones are weakly shared
layers. At the input layers of DTNs, 1, 000 words are extracted and
stemmed from the text parts and their frequencies are input into text
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Figure 4: Accuracy (%) of different algorithms with number of auxiliary labeled images. Solid line and dotted line denote the two
experiment settings SD and CD, respectively. This figure follows Figure 3.

SAEs. We extract the 4096 dims CNN features as an visual features
for images by AlexNet [16, 13], and then reduce the dimensionality
of CNN features into the 1226 dims by PCA.

The accuracies over all categories with varying number of auxil-
iary training examples are plotted in Figure 3 and Figure 4. Either
in SD setting or CD setting, the accuracy of traditional SVMs and
SAEs algorithms is the lowest among all the compared algorithm-
s no matter how many training images are used, since neither of
them explores the heterogeneous domain. The performance of the
compared transfer learning algorithms, including TTI, HTL and the
proposed DTNss, is improved to different degrees. Among them,
both of two proposed training algorithms, sigDTNs and duftDTNss,
have performed the best.

All the subplots in Figure 3 and 4 show that the proposed DTN,
with both training algorithms of sigDTNs and duftDTNs, outper-
form the other compared algorithms. It illustrates the amazing ad-
vantages of the proposed DTNs when there are an extremely little
amount of training data. This is also consistent with our earlier as-
sertions that our DTNs can work well even in the insufficiency of
auxiliary training examples, by exploring the co-ocurrence infor-
mation between text and image. We also observe that duftDTNs
often performs better than sigDTNs. This is due to the fact that
duftDTNs use an extra step to tune the image SAEs with the train-
ing images. This better balances between the fine tuning of text
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and image SAEs, when the text labels are much more than image
labels.

Table 2 also reports the average accuracies of various method-
s over all 10 categories with varying number of training images.
Results in both of two experiment settings are reported in this ta-
ble. An interesting discovery is the accuracy in cross-dataset (CD)
setting is much comparable with that in single-dataset (SD) setting.
This suggests that the DTNs trained with one data set (NUS-WIDE)
are well generalized to transfer the labels between data sets (i.e.,
from NUS-WIDE to ImageNet). This is a very useful property in
many real applications when we have to handle data from different
sources.

The above results for DTNs are obtained by using 3,000 co-
occurrence pairs of text and image. Since the co-occurrence pairs
play an important role as a bridge to connect heterogeneous do-
mains in our proposed DTNs, we examine the effect with varying
number of co-occurrence pairs of text and image in Figure 5, where
the number of training images is fixed to 10. The average accuracy
of TTI and DTNs in both SD and CD settings are increased with an
increasing number of co-occurrence text-image pairs. This suggest-
s that more co-occurrence pairs tend to provide more information
to better model DTNs with improved performance.



82 1 | —8—sigDTNs
81 —6— duftDTNs
80 1| —&—TTI
) | |—=—mnTL
< 78 1| —— SAEs
g 77./?/'9/3/2/' SVM
3 76 ]
Q
S 75 ]
o} 74 ]
© 73 &
<< 718 ]
Th—5— ]
69
68 3
67 . . . . J
500 1000 1500 2000 2500 3000

# co—occurred pairs

(a) Experiment setting SD

- B -3sigDTNs

- ¢ - duftDTNs

- -A-TTI

79% - - = =% -8 e -HTL

- © - SAEs
SVM

77 -

Average accuracy (%)
-
wn

68 i

1000 1500 2000
# co—occurred pairs

2500 3000

(b) Experiment setting CD

Figure 5: Number of co-occurrence pairs vs. average accuracy (%) in SD and CD settings. (a) and (b) denote the two experiment

settings SD and CD respectively.

o -4
-0 M.

o0 O
T T

=
T

n
T

Average accuracy (%)
~N 3 :l] ~N 3

N
T

—&— Weakly—shared DTNs on SD
—&— Strongly—shared DTNs on SD
- € - Weakly—shared DTNs on CD
— © — Strongly—shared DTNs on CD ||

5 6 7 8 9 10
# training images

w
~

Figure 6: Comparison results of DTNs with weakly shared lay-
ers and strongly parameter-shared layers.

83.0 T T T T T T j ' '
82.5+ fE’_‘_‘_‘_‘_—_-_-_-_—_-_.—_—_-_-_—_é

82.0F -
_ 8l
= 381 1
2 80.5-

Average accurac

Figure 7: Parametric sensitivity vs. average accuracy (%) with
different parameters v and )\ on 10 training images. Solid line
and dotted line denote the SD and CD settings, respectively.

5.4 Strongly Parameter-Shared vs. Weakly
Parameter-Shared Layers

To illustrate the superiority of the weakly parameter sharing, we
also compare the performances of DTNs with strongly parameter-
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shared layers and weakly parameter-shared layers. For strongly
parameter-shared layers, we set Wg) = ng and bg) = bg) for
text and image SAEs for the top layers | = L1 +1,-- -, L. In other
words, these layers share the same neuron connections between two
successive layers.

In this experiment, we also set the number of training images
from 2 to 10. Figure 6 compares the performances of weakly
parameter-shared layers and strongly parameter-shared layers. We
can see that the performances of DTNs with weakly shared layers
are further improved as compared with DTNs with strongly shared
layers in both SD and CD settings. This confirms that proposed
weakly shared layers are more suitable to model the DTNs than
strongly shared layers.

5.5 Parameter Sensitivity

In the experiments, parameters -y and A of object function J in E-
q. (6) are chosen~y € {0,0.5,1.0,2.0} and X € {0.1,0.5,1.0,2.0}
respectively by a cross-validation procedure. Conventionally, we
set n = 1 to equally weigh the two types of loss terms. Here, we
study their impacts on the performances in Figure 7. When v = 0,
the average accuracy is the lowest. This is because in this case
the text and image SAEs are completely independent without any
shared layers. This structure fails to model the joint image and text
representation, and is unable of transferring labels across heteroge-
nous domains. The accuracy increases rapidly when v becomes
large. On the other hand, A can also improve the accuracy when it
is set to a proper value to regularize the model. The best accuracy in
both SD and CD settings is achieved when v = 1 and A = 0.5. The
accuracies with different values of parameters are not varied very
much, which suggests that DTNs are not very sensitive to these
model parameters.

6. CONCLUSION

In this paper, we propose a type of novel weakly-shared Deep
Transfer Networks (DTNs) to translate cross-domain information
from text domain to image domain. The proposed DTNs with
weekly parameter-shared layers can more powerfully capture com-
plex representation of data of different domains with both shared
inter-domain and domain-specific knowledge than the strongly para-
meter-shared layers. The DTNs are trained in a novel way that di-
rectly minimizes the loss incurred by a label transfer function. This
yields a dual-fine tuning strategy to train DTNs from top down with



back-propagated errors that are derived from the label transfer loss
alongside the loss from softmax output layer of image SAE to avoid
unbalanced tuning. We show superior results of the proposed DTNs
on extensive experiments as compared with the baselines and the
other state-of-the-art methods.
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